A DMT Myograph System is a substantial investment, and maintaining the myograph system is vital to ensure optimal performance, reliability, and output.
Following the maintenance protocols in the user documentation will keep the myograph accurate and reliable for quite a while, with no downtime or failure. However, preventive care reduces the tear and wear of the system, and maintenance can extend the myograph's lifetime. The service check consists of; System dismantles, part cleaning, assembly, lubrication temperature re-compensation of transducers, replacement of internal tubing, calibration, update of firmware *2, functional system test, and documentation. The service is performed by certified technicians only, and the turnaround time is typically 4-5 days. Myograph Maintenance Options
Getting your myograph system serviced by DMT during a valid warranty will add one extra year to the warranty. Contact us for more information *1 annual service for the duration on the agreement *2 when possible ![]() Vascular disease is any abnormalities of blood vessels in the body. According to the American Heart Association data, close to 50% of all adult Americans (~100 million people) have the most common form of the vascular disease known as hypertension. Other forms of vascular disease include atherosclerosis, aneurysms, peripheral artery disease, amongst many others. If left untreated, complications from vascular disease could lead to debilitating illnesses such as heart attack, stroke, and even death in some cases. Although progress is being made in unraveling the mechanisms of vascular disease, more still needs to be done. It is imperative, therefore, that novel vascular disease models are studied in preclinical settings to generate new therapeutics. Myography is a state-of-the-art application in the study of vascular disease ex vivo. Methodology Myography is simply the study of the velocity of muscle contraction. This technique can be harnessed to measure the force generated when a blood vessel contracts and relaxes under isometric conditions. The generated information can then be used to determine the function and reactivity of blood vessels. Wire myography can be used to study vessels as small as 100 µm to as large as 3 mm in diameter. In brief, vessels are dissected from genetic, transgenic, diseased, or control models, cleaned of adventitia tissues and mounted on wire jaws or steel pins. Mounted vessels are then subjected to a baseline tension, and recordings of force measurement are conducted, and pharmacological effects of drugs can be analyzed. Examples of common vessels used in wire myography studies include conduit arteries such as the aorta, carotid, pulmonary, and some resistance arteries such as mesenteric and cerebral arteries. Pressure Myography is a more physiologically relevant method for assessing functions of small resistance arterioles ex vivo. These small resistance arteries are vital in the modulation of peripheral vascular resistance and blood flow, thereby regulating blood pressure and organ perfusion. To maintain a constant flow, resistance arteries constrict or dilate in response to changes in blood vessel pressure in a process tone as myogenic tone. This autoregulation mechanism results in maintaining a constant flow. To physiologically replicate in vivo vessel conditions in real-time and study resistance arteries using pressure myography, isolated arteries are mounted unto two glass cannulas and pressurized to in vivo pressure. A new development in pressure myography can add a pulse feature to mimic beats per minute (BPM) on the vessel. Under these conditions, vascular and drug effects can then be studied. Using data acquisition software and live tracking, vessel inner and outer diameter and over twenty endpoints are determined under flow or non-flow states. Examples of resistance arteries used in pressure myography include mesenteric, coronary, cerebral arteries with diameters of 100 µm or less. Conclusion What myography technique is best for investigators? Is it wire or pressure myograph, or both? Drawing from my fifteen-year experience as an investigator in hypertension research, I have used both wire and pressure myographs in the same laboratory setting. For large conduit vessels such as the aorta, wire myography is ideal for elucidating the mechanical properties of vessels under isometric conditions. For small resistance arteries, pressure myography is ideal to phenotype near-physiological in vivo conditions. Based on their hypothesis and vessel of interest, it is imperative for the investigator to decide if wire or pressure or both could be incorporated in their scientific tool kit. If you have questions on which methodology is best suited for your study, please contact one of our Scientific Product Specialists. By Dr. Larry Agbor Scientific Product Specialist DMT-USA, Inc. Our Scientific Product Specialist, Aaron Stupica, gives an overview of the DMT Pressure Myograph System – an ideal system for assessment of vascular structure and function of perfused arteries.
Check out the videos on our YouTube Channel, and make sure you subscribe to get the latest releases. We are excited to share a new video series, which will provide simple video tutorials on using the DMT systems. In the series, we will cover topics from system overview to experimental examples. Our goal is to provide quick videos that complement our written guides and user manuals.
Check out our videos by heading to our YouTube Channel. Make sure you subscribe to get updates when new videos are published. We hope this new video series will be useful in setting up and getting started with your DMT myograph or organ bath system. Discover more about our latest features and what was designed to add functionality to the user experience and to make it more intuitive. Live tracking of perfused arteries' vascular reactivity using the DMT Pressure Myograph Systems has never been more simple.
MyoVIEW 5 offers a simple user interface that provides live diameter tracking of perfused arteries. Using accurate edge detection from up to four user-defined zones, MyoVIEW 5 averages the lumen measurements much simpler and more reliable. Wall structure, wall stress, strain, and myogenic tone are measured, and responses to increases in pressure, flow, and drugs are evaluated regarding vascular diameter changes. MyoVIEW 5 provides data acquisition, calculations, and export of data for analysis purposes. It even allows you to create advanced calculations to customize your live traces. Add a script, and traces such as strain is live instantly. Easy and quick use, allowing full control of many parameters and management of data. Display the screen view as you want – there is complete flexibility to arrange windows neat and save your preferred layout. NEW PARTNERSHIP. We are pleased to announce that we have entered into an agreement with Courteous Pharma CPSB, effective May 1st, 2020. Courteous Pharma CPSB will be our distributor for Malaysia.
Courteous Pharma CPSB has many years of experience, expertise, and knowledge in the fields of biotechnology, medical diagnostic and medical research & development. Partnering with Courteous Pharma CPSB will enhance the local presence of DMT myographs as well as the support of Malaysian myograph users. Following the outbreak of the Coronavirus and the current pandemic, the safety and security of customers, and employees, and as our top priority.
We have put in place measures to help minimize the risk of Coronavirus to our employees and their families. All office-based employees are working from home, and those in our production that cannot do so are temporarily suspended from work under the government aid schemes. To minimize disruptions, we are continuing to operate to the extent possible and can assist with all matters relating to sales and support. Do not hesitate to get in touch. Stay safe, stay well, and take care. DMT Management Undergraduate students at the University of Sydney are using live tissue obtained from the local abattoir in their DMT Organ Baths during their pharmacology practical classes.
Senior educators, Dr. Brent McParland and Dr. Nehan Munasinghe have been recognised by the Research Integrity and Ethics Administration at the University of Sydney for their support for the 3Rs (replacement, reduction and refinement). The tissue is obtained from the abattoir where it is kept in appropriate storage for up to 3 months. An additional advantage of the new approach is the significant reduction in lab preparation time and costs. “Using live tissue enables students to view and understand biological variation, improving education outcomes,” said Dr McParland. Nehan (left) and Brent (right) met with DMT CEO Carsten Thorndahl (centre) during his recent visit to Australia.
We are pleased to announce that we have moved our headquarter to a new location! With more space and an optimized workflow, we can serve our customers better and more efficiently. Our new address is:
Danish Myo Technology A/S Rho 14 8382 Hinnerup Denmark
The exhibition begins on Sep. 10 and DMT-USA will be showing several of our myograph systems. Make sure you stop by our booth.
When the Pharmacology team at top-rated Monash University started planning for their new multidisciplinary teaching labs, they looked for alternatives to their traditional, bulky and high-maintenance organ bath systems.
|
cs4_cs8_manual_v2.1.pdf | |
File Size: | 10479 kb |
File Type: |
USING MYOGRAPHS TO STUDY THE FUNCTIONALITY
Astronauts face several difficulties after returning from space. Beside muscle and bone wastage, the cardiovascular system also shows signs of maladaptation to space. Changes of the cardiovascular system lead to under-perfusion of the brain and cause symptoms like dizziness, nausea or even blackouts. Therefore it is crucial to understand the morphological and physiological changes occurring in the vasculature of astronauts. The Transplant- and Stemcell Immunobiology (TSI-) Lab of Dr. Schrepfer at the University of California, San Francisco uses DMT myographs to study the vessel functionality of spaceflown mice. Vessels harvested from mice that had lived on the International Space Station (ISS) will be compared to vessels from ground control mice. By using vasoconstrictors and -dilators, Dr. Schrepfer investigates the functional properties of the vessels and gets knowledge of how spaceflight will affect the vasculature. The gained knowledge will not only impact the health of astronaut, at the same time it will increase the understanding of biological processes that will benefit the health of humans on earth.
Thank you for participating in our myograph course. Going through hands-on and informative lessons, everyone successfully ran experiments... getting good, consistent and reliable results. Thanks to those that attended.
PRESS RELEASE 12 July, 2017
EXCLUSIVE DISTRIBUTION OF DMT SYSTEMS IN CHINA AND HONG KONG
Danish Myo Technology A/S (DMT), a leader in design and manufacture of advanced instrumentation used in ex vivo studies of smooth, skeletal and cardiac muscles is pleased to announce the signing of an Exclusive Distribution Agreement with China Gate Scienfic Co. Ltd. for PR China and Hong Kong SAR.
This appointment, as DMT's exclusive partner in China and the establishment of DMT-China, allows China Gate Scientific the scope to grow the myograph community and to embark on the exciting challenge of promoting new instruments from DMT.
Danish Myo Technology A/S (DMT), a leader in design and manufacture of advanced instrumentation used in ex vivo studies of smooth, skeletal and cardiac muscles is pleased to announce the signing of an Exclusive Distribution Agreement with China Gate Scienfic Co. Ltd. for PR China and Hong Kong SAR.
This appointment, as DMT's exclusive partner in China and the establishment of DMT-China, allows China Gate Scientific the scope to grow the myograph community and to embark on the exciting challenge of promoting new instruments from DMT.

Press Release | |
File Size: | 226 kb |
File Type: |